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Qualitative results of experiments involving vibrating liquids and solids were presented 
in [I]. In particular, it was shown that a body situated in a cylindrical vessel with a liq- 
uid having a density greater than that of the solid may sink if the vessel performs oscilla- 
tions along its axis. In connection with this, the present study will investigate the planar 
problem of motion in a gravitational force field of a circular cylinder situated in an ideal 
incompressible liquid, limited externally by the planar surface of the oscillating wall (see 
Fig. I). The liquid and cylinder are initially at rest. At subsequent times the liquid flow 
is potential and symmetric about the x axis, and the cylinder moves in translation. Condi- 
tions will be found under which cylinders with densities less than the density of the sur- 
rounding liquid sink rather than float upward. 

I. Let x, y be an inertial rectangular coordinate system in the plane of the flow; i 
and j are unit vectors directed along the x and y axes; t is time; a is the cylinder radius; 
O(L, O) is the point of interaction of the flow plane with the axis of the cylinder; h is 
the distance from the point 0 to the line of intersection between the flow plane and the 
wall surface (h > a); h0 is the value of h at t = 02 H = L -- h; x = x -- H; r = /(i -- h) 2 + y2; 
0 is the angle at the point 0 between the vectors i and (i -- h)i + yj; Pc is the density of 
the cylinder; Pl is the density of the liquid; f is an arbitrary function of t; g = --gi is 
the acceleration of gravity. 

We will consider liquid flow and cylinder motion relative to a coordinate system i, y, 
fixed to the wall. The potential ~ of the flow velocity, the pressure p, and distance h 
satisfy the following equations and conditions: 

a-s + ) + ( j p .  = 

02018~ + O~OlOg ~ = O; 1 .2 )  

ar = 0 ~r ~ = O; 1.3) 

O~/Oy =0 for y =0, O~x~-~h--aandy ~0, x~h +a; 1.4) 

o@ o~ dh 
o z ~ " c ~ 1 7 6  ~r  r = a ;  1 . 5 )  

O0/O]C--~ O, O0/Og "-~ 0 at " X~ + g2 _._>. co; 1 .6 )  

d2h/dt 2 = F / ( a a ~ )  - -  g - -  d~H/dt~; 1 . 7) 

h = h  o, dh/dt  = 0  ~ t = 0 ,  1 .8 )  

////////// ///////// 

Fig. 1 
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where 

f = -- a S # [,=a cos ffd0. 

2. We will consider the problem of Eqs. (I .2)-(I .6). Transforming in Eqs. 
to bipolar coordinates ~, E, related to i, y by the expressions 

~-= Vh~ _-v--~- ~ sh ~ sin 
ch~l - -cos~ '  Y---- ] / h ~ -  as e h ~ l - - c o s $ '  

we obtain 

o2(~}/a2] 2 -k a2(I)/O~ 2 := O; 

a ~ / O ~  I --= 0 at ~1 = O, ~ = ~ 0 ;  

a~/a~ = 0 a t  ~ = ___nand~ = O, +1=~0; 

a~ = a ] / h  2 - -  a" a -- h cos ~ dh 
Orl (h -- a cos ~)z dt at ~1 = 110; 

acD a~ --+ 0~ (1 - -  ch q cos ~) ~ - -  sh q sin ~ 

sh q sin ~ a4~ qz $2 -- -~ -4- (ch q cos ~ -- 1) ~a~ -+ 0 for + -+  0, 

( 1 . 9 )  

( 1 . 2 ) - ( 1 . 6 )  

(2.1) 

(2.2) 

(2.3) 
(2.4) 

(2.5) 

(2.6) 

where 

qo = In h + ~ - -  a '~ (2.7) ka 

The functions ~ = n(~, Y), ~ = ~(~, y) map the flow region cut off by the section 0 ~< ~ ~< h -- 
~, y = 0 into the triangle 0 ~< ~ ~< ~0, --~ ~< ~ ~< ~. Separating the variables and making use 
of the equality 

h c o s ~ - - a  2m~ -ran o (f__a:ZE 2c~ a e , for r n = O , : [  . . . . .  ( 2 . 8 )  

we f i n d  t h e  f o l l o w i n g  s o l u t i o n  o f  t h e  p r o b l e m  o f  Eqs .  ( 2 . 2 ) - ( 2 . 6 ) :  

qb = - -  2 ]/r~--~_~_ Z ch ma cos m~ + % ( 2.9 ) 
m=t  e m% sh m% 

where  ~P i s  an  a r b i t r a r y  f u n c t i o n  o f  t .  E q u a t i o n s  ( 2 . 1 ) ,  ( 2 . 7 ) ,  ( 2 . 9 )  d e f i n e  t h e  s o l u t i o n  o f  
Eqs .  (1.2)-(1.6). 

We will substitute Eq. (2.9) into Eq. (1.1). Using the relationship obtained and Eqs. 
(1 .9 ) ,  (2.1), (2.5), (2.8), we find 

F = ~ a 2 p ~  [ g  
L 

w h e r e  

The series in Eqs. (2.11 

+ ~ + I~ --at ~ +/=a-~ ~-TF] j '  (2.10) 

~ /1  = - -  4 sh  2 ~]o am; am =- me cth mqo; 
m = l  

/S = 2 s h q o  ra=l"bm -Jr 4 sh rlo (chS +1o'+ t) m=l Cm ShZ ~1o, 

b~ = me -~'~n~ eth mqo [ m c t h  m.qo + ( m +  1) e -% eh ~1o eth (m + t) qo], 

m n =  me -2~n~ (m -- cth  qo) cth mr h. 

, ( 2 . 1 2 )  and t h e i r  r e s i d u e s  s a t i s f y  t h e  f o l l o w i n g  i n e q u a l i t i e s :  

1 ~  ctha__e o--2N~I0 
i a m < ( N " } -  2]  2 ' 

Tn~N 

i b ~ < 2 ( N + 2 ) ' c t h ~ i e  2~no, 
~n=N 

(2.11) 

(2.12) 
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~ 1  

where N = I, 2,...; ~ is any positive number. 

We note that the actions performed on the series to obtain Eqs. (2.9), (2.10) are ad- 
missible since the corresponding sufficient conditions are satisfied [2]. 

3. Let T be the period of the wall oscillations; 

2( ' ') H = A o + Am cos 2mz~ -y + B,~ sin 2m~ 7- ' (3 .  t ) 
m = l  

Ae, Am, Bm are constants; 

A o +  ~ A ~ = O , -  ~ m B m = O ;  

A is the largest value of IH[. According to Eqs. 

I ~ = -  t + - ~ - + o  -~ , & = - ~  1 

U s i n g  Eqs.  ( 2 . 1 0 ) ,  ( 3 . 1 ) ,  
t he  e q u a t i o n  

is satisfied, where ] = l - - -  

(2.7), (2.11),(2.13) we have 

+ 0  "E fo~ -z-~o. 

(3.2) 

(3.3) 

(3.3), we find that for L independent of time, A > G and A/L + 0, 

a2A3 

= A~ cos 2ma -y  + B,. sin 2m~.-y , 
LagT 2 ' ~=1 

Am, Bm are constants. For'Pc < 01, the sum of the time-independent force ~a20~g~ and the 
gravitational force --~ae0cg acting on a unit length of the cylinder is negative if 

a~kA2a~pz'[LS(p l - -  p c ) g T 2 ] > i .  

This result indicates that with sufficiently low values of T, a circular cylinder with density 
less than that of the density of the liquid in which it is located may sink rather than float. 

4. We will consider the problem of Eqs. (1.7), (1.8), (2.7), (2.10)-(2.12). At Pc = Pl 
it has the solution h = h0. Let 

: Pe=/=P l, a/ho -) '0,  A/ho'-+O' F'~ ( 4 . 1 )  

aA/( hD = > h/ho > v, 

where  ~ = h ~ l / 2 g l / 2 T ;  ~,  B, Y a r e  p o s i t i v e  numbers  (~ < 1) .  Us ing  Eqs .  ( 1 . 7 ) ,  ( 2 . 1 0 ) ,  ( 3 . 3 )  
we obtain the following approximate equation: 

- § J '  d~4 ~ g , - ~ - ]  \ + ~  (4 2) 
dt ~ 

where 

= (Pc - -  P~)/(Pr + ol ); ~' = P~ / [2 (pc  + P~)]" 

We will solve the problem of Eqs. (1.8), (4.2) by the averaging method of [3, 4]. Using the 
sub s t itut ion 

h = he z - -  •  + • ~ a~H/(hoz)  ~, t = T~ ,  ( 4 . 3 )  

to  a sy s t em of  e q u a t i o n s  in  s t a n d a r d  f o r m :  

dz/dz = FZ, 
dZ/d~ = F•215 2 + (dH/d~) ~ ]z -3 - -  i }. 

we reduce Eq. (4.2) 

(4.4) 

Using Eqs. (4.1), (4.3) and the equality obtained below, defining the dependence of z on ~, 
it can be verified that the terms dropped in transition from Eq. (4.2) to Eq. (4.4) are small 
in comparison to the terms maintained in Eq. (4.4). In the first approximation of the aver- 
aging method 
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z = z, Z = Z, ( 4 . 5 )  

where z, Z is a solution of the system 

Sz/d~; = ~ ,  idZ/d'~ = --p.•215 -a -4- 1), ( 4 . 6 )  

obtainable from Eq. (4.4) by averaging the latter over the dimensionless time T (see [3, 4]). 
Limiting ourselves to this approximation and using Eqs. (4.5), (4.6), we obtain 

d2z/d~ ~ = M%t((rz -3 - -  t ) ,  (4.7) 
where 

According to Eqs. (1.8), (3.1), (3.2), (4.3), we have 

z = l;f lz/d~r = 0  for "r = 0 .  ( 4 . 8 )  

Integrating Eq. (4.7) and using Eq. (4.8) we find 

i .. / ~ (p,'~ for 0 < o ' < t ,  j _  
ds . (4.9) 

1 2 O" S V 2  F ~ ( , - s )  s --  2 - - 2 )  --~tT for o ' < O a n d o ' > l ;  

z =  I for ~ = t .  

We note that 

~r o>0 ~r (4.10) 
~r o<0 pr 

It follows from Eq. (4.9) that at 0 < o < I z increases monotonically, while at o < 0 and o > 
I z decreases monotonically with increase in T. Thus, if a/h0, A/h0, p are small, A/a is not 
small in comparison to unity, and o > I, then according to Eqs. (4.3), (4.9), (4.10) a cir- 
cular cylinder of density less than the density of the liquid in which it is located sinks. 
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